Liprinalpha1 degradation by calcium/calmodulin-dependent protein kinase II regulates LAR receptor tyrosine phosphatase distribution and dendrite development.

نویسندگان

  • Casper C Hoogenraad
  • Monica I Feliu-Mojer
  • Samantha A Spangler
  • Aaron D Milstein
  • Anthone W Dunah
  • Albert Y Hung
  • Morgan Sheng
چکیده

Neural activity regulates dendrite and synapse development, but the underlying molecular mechanisms are unclear. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is an important sensor of synaptic activity, and the scaffold protein liprinalpha1 is involved in pre- and postsynaptic maturation. Here we show that synaptic activity can suppress liprinalpha1 protein level by two pathways: CaMKII-mediated degradation and the ubiquitin-proteasome system. In hippocampal neurons, liprinalpha1 mutants that are immune to CaMKII degradation impair dendrite arborization, reduce spine and synapse number, and inhibit dendritic targeting of receptor tyrosine phosphatase LAR, which is important for dendrite development. Thus, regulated degradation of liprinalpha1 is important for proper LAR receptor distribution, and could provide a mechanism for localized control of dendrite and synapse morphogenesis by activity and CaMKII.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

LAR protein tyrosine phosphatase regulates focal adhesions through CDK1.

Focal adhesions are complex multi-molecular structures that link the actin cytoskeleton to the extracellular matrix through integrin adhesion receptors and play a key role in regulation of many cellular functions. LAR (also known as PTPRF) is a receptor protein tyrosine phosphatase that regulates PDGF signalling and localises to focal adhesions. We have observed that loss of LAR phosphatase act...

متن کامل

The regulation of calcium/calmodulin-dependent protein kinase II during oocyte activation in the rat.

Increases in intracellular Ca2+ are required for oocyte activation and subsequent development. Calmodulin-dependent protein kinase II (CaMKII) plays a crucial role in oocyte activation. However, how CaMKII is regulated during this process is not well characterized. We show here for the first time in rat oocytes that CaMKII is phosphorylated during oocyte activation. CaMKII phosphorylation was s...

متن کامل

Temporal coherency between receptor expression, neural activity and AP-1-dependent transcription regulates Drosophila motoneuron dendrite development.

Neural activity has profound effects on the development of dendritic structure. Mechanisms that link neural activity to nuclear gene expression include activity-regulated factors, such as CREB, Crest or Mef2, as well as activity-regulated immediate-early genes, such as fos and jun. This study investigates the role of the transcriptional regulator AP-1, a Fos-Jun heterodimer, in activity-depende...

متن کامل

Inhibition of G2/M progression in Schizosaccharomyces pombe by a mutant calmodulin kinase II with constitutive activity.

Intracellular signaling by the second messenger Ca2+ through its receptor calmodulin (CaM) regulates cell function via the activation of CaM-dependent enzymes. Previous studies have shown that cell cycle progression at G1/S and G2/M is sensitive to intracellular CaM levels. However, little is known about the CaM-regulated enzymes involved. Protein phosphorylation has been shown to be important ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental cell

دوره 12 4  شماره 

صفحات  -

تاریخ انتشار 2007